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Abstract:
In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other 
service companies, especially by railways, was introduced. A mathematical formulation was provided for this prob-
lem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously 
occur. To solve the problem, two meta-heuristic methods, both based on particle swarm optimization, were provided 
and ran for small and large class problems and their efficiency were demonstrated. Also, efficiency of binary PSO to 
general PSO was tested and BPSO was shown to outperform the general method. This approach can be used in railway 
transportation.
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1.  Introduction
VRPs are one of the important optimization problems 
both in theory and practice. Many constraints have 
been added to general problem and extended it to new 
branches. In this paper, the focus was on periodic ve-
hicle routing problem as a combination of two classic 
problems: vehicle routing and assignment problem. In 
PVRP, each customer should be visited with a prede-
termined service frequency on t-day period of planning 
horizon. These services occur on specific combina-
tions. For example, if the service frequency is 2 and 
combinations are {1,3}, {2,5} and {4,6}, then each 
customer should be assigned to one of these combina-
tions. The problem consists of simultaneously selecting 
a visit combination for each customer and establishing 
vehicle routes for each day of the planning horizon ac-
cording to the VRP rules [8].
PVRP with pickup and delivery includes material pick-
up from suppliers to the main factory and delivery of 
products from central factory to customers. The high-
est application of this problem is in distributing prod-
ucts, e.g. in fuel distribution or logistic department of 
a manufacturing company. Consider a company that 
produces multiple kinds of products. Each product has 
known customers with known demand in each period. 
This company also has some needs for raw material. 
The fleet of company should both visit customers and 
providers such that the planned frequency is satisfied. 
For example, a company needs a batch of 100 units of 
raw material. Also, customer C demands 150 units of 
product A three times a week. Frequency, demand and 
supply of each product may be different. The company 
has multiple kinds of trains which are suitable for some 
products and cannot carry some others; for example, 
fluidic goods cannot be carried in one of the vehicles. 
It is supposed that inventory level is so as to satisfy 
demand of customers. There is no constraint in the case 
that pickup demands should be satisfied first or should 
be at the end of the routes. Even it can happen simulta-
neously. The objectives of the problem are to minimize 
total cost of tours over planning horizon. In this study, 
a general framework was provided that can be extended 
to be used in companies’ logistic departments. 
In Section 2, previous studies in the field of PVRP are 
described. In Section 3, a mathematical formulation of 

the problem is provided. Section 4 is about PSO in gen-
eral and Section 5 describes the proposed algorithm. In 
Section 6, the result of numerical studies is provided 
and, finally, a summary of the article is reported in Sec-
tion 7.  

2.  Literature review
Despite the application of PVRP, it has received scarce 
attention in the literature. Beltrami and Bodin [1] were 
one of the first authors who worked on PVRP. Russell 
and Igo [12] developed a heuristic in periodic assign-
ment routing problem. Also, Chao et al. [14] developed 
a two-phase heuristic. Christofides and Beasley [2] pro-
posed a mathematical model with allowable day com-
binations for the customers who needed multiple visits 
and solved the problem using a heuristic.
SDVRP (vehicle routing with site dependencies) intro-
duced by Nag et al. [9]. Chao et al. [10] and Cordeau et 
al. [11] solves this problem as an special case of PVRP. 
Hadjiconstantinou and Baldacci [7] extended the prob-
lem to multiple-depot PVRP which was applicable to 
the utility sector. 
Francis and Smilowitz [22] presented a continuous ap-
proximation model for the period vehicle routing prob-
lem with service choice (PVRP-SC). PVRP-SC is a 
variant of the period vehicle routing problem, in which 
visit frequency to nodes is a decision of the model. 
PVRP has a great application in real world. Baptista 
e al. [18] provided an extension of the heuristic al-
gorithm proposed by Christofides and Beasley [2] to 
solve a real case: collection of recycling paper contain-
ers in the City Council of Almada. Shih et al. [19] also 
solved infectious waste collection problem as PVRP 
and extended the algorithm that was developed before 
[9]. Their algorithm worked with a computer program. 
Alegre et al. [17] solved periodic pickup of raw materi-
als for a manufacturer of auto parts.
Paletta [16] provided a heuristic for PTSP and Do-
erner et al. [3] proposed a method based on variable 
neighborhood search (VNS), which could be also used 
in PTSP. Vanderbeck et al. [20] paid attention to tac-
tical planning model which restricted its attention to 
scheduling and assigning visits to vehicles while leav-
ing sequencing decisions for an underlying operational 
model. They proposed a model based on a truncated 
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column generation to optimize regional compactness of 
the routes and balance the workload.
Some metaheuristics have been developed to solve the 
PVRP. Golden et al. [4] proposed a method using the 
concept of “record-to-record”. Cordeau et al. [8] devel-
oped a general tabu search method that could be used 
in three types of routing problem: multi depot VRP, 
periodic travelers sales person and periodic vehicle 
routing problem. Later, they proposed its adapted ver-
sion, which could handle several vehicle types and site 
dependency. Drummond et al. [15] proposed a paral-
lel algorithm which was based on the concepts used in 
parallel genetic algorithms and local search heuristics.
Angelelli et al. [6] proposed a similar tabu search for a 
new extension of PVRP and considered that replenish-
ment was allowed at intermediate facilities. It means 
that, if load of a capacity was loaded to maximum ca-
pacity, the vehicle could be unloaded at an intermediate 
facility, like a warehouse. They considered that each 
vehicle returned to depot only when its work shift was 
over.
Rocha [5] proposed an efficient hybrid genetic algo-
rithm (HGA) to the problem that outperformed other 
heuristics in some cases. Gaudioso and Paletta [13] de-
veloped a heuristic to minimize the number of vehicles 
used to satisfy customers’ need and route the vehicles 
over. Also, they paid attention to balancing the work 
assigned to vehicles on each day.
Prins et al. [21] provided a memetic algorithm for pe-
riodic capacitated arc routing problem (CARP). Their 
solution was able to simultaneously change tactical 
(planning) decisions, such as treatment days of each 

arc, and operational (scheduling) decisions, such as the 
trips performed for each day. However, it could be ex-
tended with prohibited turns, mixed graphs and possi-
bility of tackling period or spacing-dependent demand 
and service cost. Considering railway in this article as a 
mode of transportation was a new contribution to VRP 
problems.

3.  Formulation
In this section, the problem is formulated as a math-
ematical program to minimize total traveling cost. The 
problem is defined as a multi-graph G=(V,A) where
V={v0,v1,…,vn} an vi is set of vertex at time t and 
A={(vi,vj )

p,k,t |k ∊ k(p)} is set of arcs. Index k refers to 
vehicle and t refers to day. k(p) is set of machines which 
can carry the pth product.
In a T-days planning horizon, Fip is equal to the number 
of services that each customer needs. This means that a 
combination should be assigned to a customer which at 
least covers Fip days. Fip varies between 1 and T which 
means a customer can be visited at most once a day.  
Fipis determined by the need of companies or custom-
ers. For example, a company needs a batch of 100 units 
of product A twice in a planning horizon; so,
 Fip is 2.
Visit combinations are defined by planners. Sometimes, 
they consist of every day service in the entire planning 
horizon or even once. List of indices, parameters and 
variables is given below:   

The objective function is to minimize the fixed cost that 

i,j: indices of customers and suppliers

k: index of transportation mode, like railway

p: index of product

t: index of time

r: index of visit combination
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yipr : equals 1 if and only if the visit combination r is assigned to customer/supplier i in order to satisfy demand/

supply of product p.

fipkt : equals 1 if and only if transportation mode k is assigned to customer/supplier i to satisfy the demand/supply of 

product p at time t.

xijkpt : equals 1 if transportation mode k travels path (i j).

uipkt : load of product p on transportation mode k when visiting customer i. 

qip : demand of customer I for product p.

sip : amount of product p which should be satisfied by ith should satisfy.

Qk : capacity of train K

art : equals 1 if day t belongs to visit combination r; otherwise, 0.

Dk : maximum distance that kth train can travel 

ck : fixed cost of the traveling kth train per unit distance

ck' : cost of the traveling kth train per unit distance per unit of weight

dij : distance between customers i and j

Min Z= ∑i ∑j ∑k ∑t ck xijkt + ∑i ∑j ∑k ∑p ∑t ck'. ujpkt . xijkt . dij (0)

∑ryipr =1     ∀i,p   (1)

∑t ∑r art .yipr ≥Fi,p     ∀i,p   (2)

∑k∊k(p)fipkt =∑r art .yipr    ∀i,p,t   (3)

fipkt ≤ ∑j xijkt     ∀i,p,k,t  (4)

∑i xijkt =∑i xjikt       ∀i,k,t  (5)

∑i xijkt ≤1       ∀j,k,t   (6)

∑i ∑j xijkt . dij ≤ Dk                  ∀k,t  (7)

uipkt - (qjp-sjp ) .fjpkt - ujpkt≤ M (1-xijkt )   ∀k,i,j,p,t  (8)

uipkt - (qjp-sjp ) .fjpkt- ujpkt ≥ - M (1-xijkt )  ∀k,j,p,t  (9)

u1pkt = ∑i  qip . fipkt     ∀p,k,t    (10)

∑p uipkt ≤ Qk                                             ∀k,i,t   (11)

ujpkt ≤ M.∑i xijkt     ∀p,k,t,j  (12)

xijkt , fipkt , yipr = {0,1}    ujpkt ≥ 0
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each train consumes for traveling the distance and vari-
able cost which depends on the load of train. Constraint 
(1) guarantees that demand/supply of each customer/
supplier is assigned to a combination of days. Con-
straint (2) ensures that the tour which is assigned to the 
customer is at least equal to its planned frequency of 
visit. Constraints (3) and (4) stipulate that each node’s 
demand/supply on the assigned combination should 
be satisfied by a train. Constraint (5) guarantees that 
each train entering a customer should exit from it. Con-
straint (6) confines the train to move on just one arc 
at a time. Constraint (7) is for maximum traveling of 
each train. Constraints (8) and (9) determine load of 
the trains when visiting customers and Constraint (10) 
determines load of each train when starting from depot. 
Constraint (11) is upper limit of the load of train. Con-
straint (12) means that load of each train can be greater 
than zero if and only if the train visits it.

4.  Particle Swarm Optimization in General
Particle swarm optimization which was introduced by 
Kennedy and Eberhart [24] is inspired by motion of bird 
swarms. Individuals in a PSO have a position and ve-
locity and are symbolized particles. The birds move to 
reach a place which has a greater amount of food. Each 
particle in this swarm has two kinds of intelligence: self 
intelligence and social intelligence, which is sharing in-
formation; so, individuals can use previous experience 
of all other particles. Social intelligence helps the birds; 
so, they move toward the optimal solution passed by 
the swarm; on the other hand, self intelligence helps 
them to search the neighborhood of the best place that 
have been seen. The position with the minimum fitness 
value is the entire swarm’s global best (gbest) position, 
towards which other particles move. In addition, each 
particle’s best position which has been visited is its per-
sonal best (pbest). Velocity of each bird corresponds to 
gbest and pbest and the algorithm is developed on the 
basis of these facts.
Consider a swarm with p particle, each of which is a 
feasible solution of the problem. For each particle of i,  
represents position of particle i,xi Position of the parti-
cle would be updated at each iteration by the following 
formula:
xk

i+1=xk
i+vk

i
+10                           (1)

where k is index of iterations. Velocity is updated by 
the following formula:
 vk

i
+1= ωk. vk

i
 + c1 r1( pk

i-xk
i
 ) +c2 r2 (pk

g-xk
i ).           (2)

K indicates the number of iteration, pk
i is the best ever 

position of particle I at iteration k (cognitive contribu-
tion) and pk

g is the global best position of swarm.r1 and 
r2 are random numbers which are uniformly distributed 
between 0 and 1.c1 is selfishness coefficient and c2 is 
sociality coefficient. ωk is inertia of the particle which 
is impact of velocity of each particle at iteration k on 
velocity of iteration k+1. ωk can be set constant or in-
ferred from an equation; so, the inertia can be adopted 
at each iteration. A maximum and minimum level can 
be set for velocity, which helps the particle to move 
smoothly. It means that it helps the particles escape 
from local optimum and also does not allow them to 
move rapidly and jump over the local optimum. Also, 
similar parameters can be set fo inertia.
The inertia is usually set at the beginning maximum; 
so, searching larger space gradually decreases it to 
more searching at the neighborhood of particles.c1 and 
c2 are mostly set by fine tuning; but, it has been men-
tioned in the literature that it is better to set them c1= 
c2=2 therefore, because r1 and r2 are uniformly distrib-
uted between 0 and 1, the particle would be equally af-
fected by the global best and local best. The algorithm’s 
pseudo-code is shown in Figure 1.

Figure 1. Particle Swarm Optimization Flow Chart
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5.  The proposed algorithm
Two algorithms were proposed based on particle swarm 
optimization. These two algorithms had two represen-
tations; so, their cost was different. 

5.1.  Binary PSO
General PSO is an efficient method for continuous vari-
ables. Although floor and similar operators can be used 
to develop the algorithm for discrete forms, when the 
variable is binary, moving space is so much narrow that 
may force the particle to be fixed on its position. Thus, 
a new improved algorithm based on PSO intelligence 
was proposed. In the new method, stage of updating 
velocity remained the same. After updating velocity,  
s(vi

k+1) could be calculated such that:

s(vi
k+1)=1⁄(1+e-v

i
k+1)             (3)

So, if ,r < s(vi
k+1), then xk

i+1 = 1; else, xk
i+1 = 0 ; 

where r is a random number which is uniformly distrib-
uted between 0 and 1. s(vi

k+1) = 35% means that there is 
35% chance that particle I is assigned. This method was 
proposed by Kennedy and Eberhart [23] and used in 
some industrial problems with acceptable performance. 
They claimed that better values are likely choosing 1 
with higher chance. The problem is the new particle 
position may not be feasible because the algorithm 
does not search just I feasible space. And, there was 
no guarantee that velocity was so that the constraints 
were satisfied.

5.2.  The 1st proposed algorithm
In the proposed flowchart, only yipr and fipkt positions 
were moved using (EQ.3) to determine value of vari-
ables. Value of xijkt routes that should be traveled by 
train was constructed based on these two variables.  
The pseudo-code is here:
1.	 Set k=0.
1.1. Set NOP=number of particles.
1.2. Generate NOP feasible solution randomly.
1.3. Calculate fitness function for each particle.
1.4. Set values= pbest for each particle.
1.5. Set global best equal to minimum value (gbest).
2.	 Set k=k+1.
3.	 Calculate velocity by equation (EQ.2).
4.	 If r < s(vi

k+1), set xk
i+1 =1; else, xk

i+1 = 0.

5.	 Check feasibility.
5.1. If particle is feasible, go to the next step.
5.2. If more than one train/combination is assigned to a 

customer’s demand/supply, randomly omit the exl-
tra. Or, if it is not assigned to a train/combination, 
randomly assign it to one.

6.	 Construct all feasible modes of paths which the 
trains should travel. Select the route with mini-
mum cost. 

6.1. If load constraints are not satisfied, generate ran-
domly; else, continue.

7.	 Calculate fitness function.
8.	 Calculate local best and global best.
9.	 Loop until stopping criteria.

5.4  The 2nd proposed algorithm
The second method is based on integer PSO. In this 
algorithm, the variables were represented by the indid-
ces. For example, if f2331=1 (the demand/supply of third 
commodity of customer 2 at period 1 was assigned to 
train number 3, the particles would be i, p, k and t. So, 
if velocity of k and t for this demand/supply was -1.1 
and -0.23, f2331 would become zero; instead, f2331 would 
be 1.
In this new method, first fipkt was generated in a man-
ner that Constraint 2 was satisfied. So, routes were pro-
duced based on .fipkt Thus, first, the customers assigned 
to each train in each period were identified. Then, the 
tour was generated for it so that load constraints were 
satisfied. Then, fipkt indices were moved by velocity 
which was calculated by velocity equation. So, if r yipr 
and k fipkt were moved, the particles’ position would 
be changed in a manner that most of the constraints’ 
feasibility was conserved (note that r determines when 
the demand/supply of product p should be delivered or 
taken from the customer). The pseudo-code is below:
1. Set k=0.
1.1. Set NOP=number of particles.
1.2. Generate NOP feasible solution randomly.
1.3. Calculate fitness function for each particle.
1.4. Set values= pbest for each particle.
1.5. Set global best equal to minimum value (gbest).
2. Set k=k+1.
3. Calculate velocity of r and k by equation (EQ.2).
4. Calculate x,y,f and u.
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If load constraints are not satisfied, examine another 
combination of customer visiting. If appro 
1. priate combination of visiting could not be found, 

randomly generate fipkt.
2. Calculate fitness function for all feasible tours.
3. Calculate local best and global best.
4. Calculate velocity for r and k and find a new posi-

tion.
5. Loop until stopping criteria
1. Also, the equations noted in general PSO were 

used; but, complementary rules were used to im-
prove efficiency of this method. These side equa-
tions were for calculating velocity and inertia. 

2. In both methods, initial feasible solutions were 
generated using the method shown above:

1. Randomly generate an integer in [1 rmax] ∀i,∀p. 
(For example, for i =1,and p=1,3; so, demand/sup-
ply of the first customer for product #1 is satisfied 
on 3rd combination. Next, for  i =1,and p=2, 2; so, 
the 1st customer’s demand for product #2 is satis-
fied on 2nd combination.)

2. Determine t for each I and p. (art can be illustrated 
as a matrix which determines planning of each day 
on each combinations. So, when # of the combina-
tion which is assigned to satisfy a demand/supply 
is determined, time would be easily calculated.)

3. Determine # of train for each i,p,t.
4. Determine the customers which are assigned to 

each train on each t.
5. Construct all feasible tours for each train and se-

lect the best of them.

6.  Numerical results
As described above, two meta-heuristics were used to 
solve PVRP with pickup and delivery. Both methods 
were based on particle swarm optimization.

To show validation of the model and illustrate efficien-
cy of the proposed meta-heuristics, they were tested for 
5 small size problems. Exact solutions were solved by 
lingo 8.0 and metaheuristics #1 and #2 were coded by 
Matlab 7.7.0. Results are shown in Table 1. The num-
ber of variables and number of customers are demon-
strated for each problem. Computational complexity 
was so high which could not be on  a reasonable time 
with exact methods. Lingo runtime was also recorded 
to prove this; even the problems with greater dimension 
could not escape from feasibility to local optima. Note 
that the best known in the table was global optimum in 
lines 4 and 5. The software could not reach global opti-
mum; so, the solver was interrupted on local optimum. 
The proposed methods could reach a better solution; 
i.e. they could solve the problem on a reasonable time, 
even compared to the exact solution. 
NOP (number of particles) for all of them was set at 
50 and the loop was done 200 times. PSO parameters 
were set by fine tuning. As can be observed, all of them 
reached a reasonable solution and it was not so strange. 
200 times run with 50 particles were likely to search a 
large space in the feasible solutions because of small 
feasible solution corresponding to number of variables 
and constraints. To compare metaheuristics 1 and 2, 
their path to global optima for the 5th problem is shown 
in Figure 2. Initial solutions were different because the 
codes of producing initial solutions were separately 
run. It showed that, unlike greater value of initial so-
lution, the second method could find a better solution 
at the same iteration. Because the second method was 
outlined in a manner that could only search the feasible 
space, it had enough time to decide on the direction to 
move on; so, it reached a better solution at the same 
time. 

Table 1. Numerical Results for small size problems

# Number of 
customers

Number 
of trains

Number of 
products

Number of 
combinations

Number of 
constraints

Number of 
variables

Run 
time(h)

Best 
known M1 M2

1 3 4 4 2 800 1933 0.03 104 104 104

2 7 4 4 2 7838 2112 0.36 298 298 298

3 12 4 4 2 20977 4472 1.83 462 462 462

4 15 5 5 2 49556 8480 4.98 915 906 906

5 20 5 5 2 85981 13230 10.4 1516 1456 1456

*. M: Metaheuristic
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Large size problems were tested and the results are 
given in Table 2. Because of large feasible space and 
number of constraints, global optima or even a feasi-
ble solution could not be found via software. But to 
compare the solutions, the problems were run for some 
large scale problems and the programs were run with 
NOP=100 and 200 iterations. Because the results were 
close to each other, it was probably that they reached 
close to global optimum. The results are shown in Ta-
ble 2.
Although runtime for both methods depended to di-

mension of the problem, run time relatively increased 
as the dimension increased; but, it was less than 2 min 
in all the cases.
As said above, the second metaheuristic was based on 
the method proposed by Kennedy and Eberhart [23]. 
This method was proved in their study and other simi-
lar works, in which it had even better efficiency. Also, 
the hypothesis was tested and the results were similar 
to those obtained by others. 
The general PSO that was used had a simple structure 
and its steps were all like general PSO. To map velocity 
(continuous variable) to binary space, a simple rule was 
set: if new positions were bigger than 0.5, then, assign 
1 to them; else, 0.
They were also tested and compared for some small 
and large classes of problems, the results of which re 
recorded in Table 3.

All the parameters were set equal and initial solution 
was the same for both methods. Table 3 shows behavior 
of two methods. As is shown, the proposed metaheuris-
tic had greater velocity in reaching global optimum. 
Because general PSO provided a narrow space for bi-
nary variables, it could not escape from local optimum 
and was fixed in its place. 

# Number of
 customers

Number of 
trains

Number of
 combinations

Number of 
products M1 M2

1 50 8 2 5 5756 5802

2 50 8 2 8 6134 6134

3 80 10 2 5 8360 8360

4 80 10 2 8 9634 9687

5 90 10 2 5 9838 9857

6 90 10 2 8 10284 10322

7 100 10 2 5 10360 10402

*Metaheuristic 1:__        *Metaheuristic 2: _._

Figure 2. results 5t small scale problem

Table 2. large scale problems

# Number of
 customers

Number of 
trains

Number of 
combinations

Number of 
products

General
PSC BPSO

1 7 8 2 5 5756 5802

2 12 8 2 8 6134 6134

3 20 10 2 5 9237 8360

4 80 10 2 8 9734 9687

5 90 10 2 5 10428 9857

6 100 10 2 8 11352 10322

Table 3. compare general PSO and BPSO
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7.  Conclusions
This paper presented a new problem in PVRP consider-
ing railway transportation. The new problem consisted 
of multi-product version of general PVRP with pickup 
and delivery. At first, a mathematical representation of 
method was provided and the problem was solved in 
small scale by exact method. Because of complexity of 
the problem, optimum could not be obtained in large 
scale problems.
To solve the problem, two methods were used, both of 
which were based on particle swarm optimization; one 
of them was inspired by BPSO and the second one had 
a new representation of variables. They were run for 
small and large classes of problems. Both methods in 
small– medium sizes were very efficient and reached 
global optimum. As an exact solution could not be ob-
tained for problems, both methods were run and it was 
demonstrated that they converged to a point which was 
probably near global optima. At the end, general PSO 
was used and compared with BPSO and it was shown 
that BPSO outperformed general method. Further re-
search should improve efficiency of the proposed PSO 
in PVRP family and compared it with other methods 
like ant colony optimization.   
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